Chartered Accountants Foundation Course

J. Maria Joseph PhD

Department of Mathematics, St.Joseph's College(Autonomous),

Trichy-2

9. Februar 2018

Question

The equation $-7 x+1=5-3 x$ will be satisfied for x equal to:

Question

The equation $-7 x+1=5-3 x$ will be satisfied for x equal to:

Options
 $\begin{array}{llll}\text { (a) } 2 & \text { (b) }-1 & \text { (c) } 1 & \text { (d) none of these }\end{array}$

Question

The equation $-7 x+1=5-3 x$ will be satisfied for x equal to:

Options

$\begin{array}{llll}\text { (a) } 2 & \text { (b) }-1 & \text { (c) } 1 & \text { (d) none of these }\end{array}$

Question

The root of the equation $\frac{x+4}{4}+\frac{x-5}{3}=11$ is

Question

The root of the equation $\frac{x+4}{4}+\frac{x-5}{3}=11$ is

Options

(a) 20 (b) 10 (c) 2 (d) none of these

Question

The root of the equation $\frac{x+4}{4}+\frac{x-5}{3}=11$ is

Options

$\begin{array}{llll}\text { (a) } 20 & \text { (b) } 10 & \text { (c) } 2 & \text { (d) none of these }\end{array}$

Question

Pick up the correct value of x for $\frac{x}{30}=\frac{2}{45}$

Question

Pick up the correct value of x for $\frac{x}{30}=\frac{2}{45}$

Options

$\begin{array}{llll}\text { (a) } x=5 & \text { (b) } x=7 & \text { (c) } x=1 \frac{1}{3} & \text { (d) none }\end{array}$ of these

Question

Pick up the correct value of x for $\frac{x}{30}=\frac{2}{45}$

Options

$\begin{array}{llll}\text { (a) } x=5 & \text { (b) } x=7 & \text { (c) } x=1 \frac{1}{3} & \text { (d) none }\end{array}$ of these

Question

The solution of the equation $\frac{x+24}{5}=4+\frac{x}{4}$

Question

The solution of the equation $\frac{x+24}{5}=4+\frac{x}{4}$

Options

(a) $6 \quad$ (b) $10 \quad$ (c) 16 (d) none of these

Question

The solution of the equation $\frac{x+24}{5}=4+\frac{x}{4}$

Options

$\begin{array}{llll}\text { (a) } 6 & \text { (b) } 10 & \text { (c) } 16 & \text { (d) none of these }\end{array}$

Question

8 is the solution of the equation

Question

8 is the solution of the equation

Options

$$
\begin{aligned}
& \text { (a) } \frac{x+4}{4}+\frac{x-5}{3}=11 \\
& \begin{array}{ll}
\text { (b) } \frac{x+4}{2}+\frac{x+10}{9}=8 \\
\text { (c) } \frac{x+24}{5}=4+\frac{x}{4} & \text { (d) } \frac{x-15}{10}+\frac{x+5}{5}=4
\end{array}
\end{aligned}
$$

Question

8 is the solution of the equation

Options

$$
\begin{aligned}
& \text { (a) } \frac{x+4}{4}+\frac{x-5}{3}=11
\end{aligned} \begin{array}{ll}
\text { (b) } \frac{x+4}{2}+\frac{x+10}{9}=8 \\
\text { (c) } \frac{x+24}{5}=4+\frac{x}{4} & \text { (d) } \frac{x-15}{10}+\frac{x+5}{5}=4
\end{array}
$$

Question

The value of y that satisfies the equation $\frac{y+11}{6}-\frac{y+1}{9}=\frac{y+7}{4}$ is

Question

The value of y that satisfies the equation $\frac{y+11}{6}-\frac{y+1}{9}=\frac{y+7}{4}$ is

Options
$\begin{array}{llll}\text { (a) }-1 & \text { (b) } 7 & \text { (c) } 1 & \text { (d) }-\frac{1}{7}\end{array}$

Question

The value of y that satisfies the equation $\frac{y+11}{6}-\frac{y+1}{9}=\frac{y+7}{4}$ is

Options

$$
\begin{array}{llll}
\text { (a) }-1 & \text { (b) } 7 & \text { (c) } 1 & \text { (d) }-\frac{1}{7}
\end{array}
$$

Question

The solution of the equation

$$
(p+2)(p-3)+(p+3)(p-4)=p(2 p 5) \text { is }
$$

Question

The solution of the equation

$$
(p+2)(p-3)+(p+3)(p-4)=p(2 p 5) \text { is }
$$

Options

$\begin{array}{llll}\text { (a) } 6 & \text { (b) } 7 & \text { (c) } 5 & \text { (d) none of these }\end{array}$

Question

The solution of the equation

$$
(p+2)(p-3)+(p+3)(p-4)=p(2 p 5) \text { is }
$$

Options

$\begin{array}{llll}\text { (a) } 6 & \text { (b) } 7 & \text { (c) } 5 & \text { (d) none of these }\end{array}$

Question

The equation $\frac{12 x+1}{4}=\frac{15 x-1}{5}+\frac{2 x-5}{3 x-1}$ is true for

Question

The equation $\frac{12 x+1}{4}=\frac{15 x-1}{5}+\frac{2 x-5}{3 x-1}$ is true for

Options

$\begin{array}{llll}\text { (a) } x=1 & \text { (b) } x=2 & \text { (c) } x=5 & \text { (d) } x=7\end{array}$

Question

The equation $\frac{12 x+1}{4}=\frac{15 x-1}{5}+\frac{2 x-5}{3 x-1}$ is true for

Options

$\begin{array}{llll}\text { (a) } x=1 & \text { (b) } x=2 & \text { (c) } x=5 & \text { (d) } x=7\end{array}$

Question

Pick up the correct value x for which
$\frac{x}{0.5}-\frac{1}{0.05}+\frac{x}{0.005}-\frac{1}{0.0005}=0$

Question

Pick up the correct value x for which $\frac{x}{0.5}-\frac{1}{0.05}+\frac{x}{0.005}-\frac{1}{0.0005}=0$

Options
 $\begin{array}{llll}\text { (a) } x=0 & \text { (b) } x=1 & \text { (c) } x=10 & \text { (d) none of }\end{array}$

 these
Question

Pick up the correct value x for which $\frac{x}{0.5}-\frac{1}{0.05}+\frac{x}{0.005}-\frac{1}{0.0005}=0$

Options

$$
\begin{array}{llll}
\text { (a) } x=0 & \text { (b) } x=1 & \text { (c) } x=10 & \text { (d) none of }
\end{array}
$$ these

Question
 The sum of two numbers is 52 and their difference is 2 . The numbers are

Question

The sum of two numbers is 52 and their difference is 2 . The numbers are

Options

$\begin{array}{lll}\text { (a) } 17 \text { and } 15 & \text { (b) } 12 \text { and } 10 & \text { (c) } 27 \text { and } 25\end{array}$
(d) none of these

Question

The sum of two numbers is 52 and their difference is 2 . The numbers are

Options
$\begin{array}{lll}\text { (a) } 17 \text { and } 15 & \text { (b) } 12 \text { and } 10 & \text { (c) } 27 \text { and } 25\end{array}$
(d) none of these

Question
 The diagonal of a rectangle is 5 cm and one of at sides is 4 cm . Its area is

Question

The diagonal of a rectangle is 5 cm and one of at sides is 4 cm . Its area is

Options

(a) $20 \mathrm{sq} . \mathrm{cm}$. (b) $12 \mathrm{sq} . \mathrm{cm}$. (c) $10 \mathrm{sq} . \mathrm{cm}$.
(d) none of these

Question

The diagonal of a rectangle is 5 cm and one of at sides is 4 cm . Its area is

Options
$\begin{array}{lll}\text { (a) } 20 \mathrm{sq} . \mathrm{cm} . & \text { (b) } 12 \mathrm{sq} . \mathrm{cm} . & \text { (c) } 10 \mathrm{sq} . \mathrm{cm} .\end{array}$
(d) none of these

Question
 Divide 56 into two parts such that three times the first part exceeds one third of the second by 48 . The parts are.

Question

Divide 56 into two parts such that three times the first part exceeds one third of the second by 48 . The parts are.

Options

(a) $(20,36) \quad$ (b) $(25,31) \quad(c)(24,32) \quad(d)$
none of these

Question

Divide 56 into two parts such that three times the first part exceeds one third of the second by 48 . The parts are.

Options
(a) $(20,36)$
(b) $(25,31)$
(c) $(24,32)$
(d) none of these

Question

The sum of the digits of a two digit number is 10 . If 18 be subtracted from it the digits in the resulting number will be equal. The number is

Question

The sum of the digits of a two digit number is 10 . If 18 be subtracted from it the digits in the resulting number will be equal. The number is

Options
$\begin{array}{llll}\text { (a) } 37 & \text { (b) } 73 & \text { (c) } 75 & \text { (d) none of these }\end{array}$

Question

The sum of the digits of a two digit number is 10 . If 18 be subtracted from it the digits in the resulting number will be equal. The number is

Options
$\begin{array}{llll}\text { (a) } 37 & \text { (b) } 73 & \text { (c) } 75 & \text { (d) none of these }\end{array}$

Question

The fourth part of a number exceeds the sixth part by 4 . The number is

Question

The fourth part of a number exceeds the sixth part by 4 . The number is

Options
 $\begin{array}{llll}\text { (a) } 84 & \text { (b) } 44 & \text { (c) } 48 & \text { (d) none of these }\end{array}$

Question

The fourth part of a number exceeds the sixth part by 4 . The number is

Options
$\begin{array}{llll}\text { (a) } 84 & \text { (b) } 44 & \text { (c) } 48 & \text { (d) none of these }\end{array}$

Question

Ten years ago the age of a father was four times of his son. Ten years hence the age of the father will be twice that of his son. The present ages of the father and the son are.

Question

Ten years ago the age of a father was four times of his son. Ten years hence the age of the father will be twice that of his son. The present ages of the father and the son are.

Options
(a) $(50,20) \quad(b)(60,20) \quad(c)(55,25) \quad(d)$ none of these

Question

Ten years ago the age of a father was four times of his son. Ten years hence the age of the father will be twice that of his son. The present ages of the father and the son are.

Options
(a) $(50,20)$
(b) $(60,20)$
(c) $(55,25)$
(d) none of these

Question

The product of two numbers is 3200 and the quotient when the larger number is divided by the smaller is 2 . The numbers are

Question

The product of two numbers is 3200 and the quotient when the larger number is divided by the smaller is 2 . The numbers are

Options

(a) $(16,200) \quad(b)(160,20) \quad(c)(60,30) \quad(d)$
$(80,40)$

Question

The product of two numbers is 3200 and the quotient when the larger number is divided by the smaller is 2 . The numbers are

Options
(a) $(16,200) \quad(b)(160,20) \quad(c)(60,30) \quad(d)$ $(80,40)$

Question

The denominator of a fraction exceeds the numerator by 2 . If 5 be added to the numerator the fraction increases by unity. The fraction is.

Question

The denominator of a fraction exceeds the numerator by 2 . If 5 be added to the numerator the fraction increases by unity. The fraction is.

Options

$\begin{array}{llll}\text { (a) } \frac{5}{7} & \text { (b) } \frac{1}{3} & \text { (c) } \frac{7}{9} & \text { (d) } \frac{3}{5}\end{array}$

Question

The denominator of a fraction exceeds the numerator by 2 . If 5 be added to the numerator the fraction increases by unity. The fraction is.

Options
$\begin{array}{llll}\text { (a) } \frac{5}{7} & \text { (b) } \frac{1}{3} & \text { (c) } \frac{7}{9} & \text { (d) } \frac{3}{5}\end{array}$

Question

Three persons Mr. Roy, Mr. Paul and Mr. Singh together have Rs.51. Mr. Paul has Rs. 4 less than Mr. Roy and Mr. Singh has got Rs. 5 less than Mr. Roy. They have the money as.

Question

Three persons Mr. Roy, Mr. Paul and Mr. Singh together have Rs.51. Mr. Paul has Rs. 4 less than Mr. Roy and Mr. Singh has got Rs. 5 less than Mr. Roy. They have the money as.

Options
(a) (Rs. 520, Rs. 16, Rs. 15) (b) (Rs. 15, Rs. 20, Rs. 16) (c) (Rs. 25, Rs. 11, Rs. 15) (d) none of these

Question

Three persons Mr. Roy, Mr. Paul and Mr. Singh together have Rs.51. Mr. Paul has Rs. 4 less than Mr. Roy and Mr. Singh has got Rs. 5 less than Mr. Roy. They have the money as.

Options

(a) (Rs. 520, Rs. 16, Rs. 15) (b) (Rs. 15, Rs. 20, Rs. 16) (c) (Rs. 25, Rs. 11, Rs. 15) (d) none of these

Question

A number consists of two digits. The digits in the ten's place is 3 times the digit in the unit's place. If 54 is subtracted from the number the digits are reversed. The number is

Question

A number consists of two digits. The digits in the ten's place is 3 times the digit in the unit's place. If 54 is subtracted from the number the digits are reversed. The number is

Options
 $\begin{array}{llll}\text { (a) } 39 & \text { (b) } 92 & \text { (c) } 93 & \text { (d) } 94\end{array}$

Question

A number consists of two digits. The digits in the ten's place is 3 times the digit in the unit's place. If 54 is subtracted from the number the digits are reversed. The number is

Options
$\begin{array}{llll}\text { (a) } 39 & \text { (b) } 92 & \text { (c) } 93 & \text { (d) } 94\end{array}$

Question

One student is asked to divide a half of a number by 6 and other half by 4 and then to add the two quantities. Instead of doing so the student divides the given number by 5 . If the answer is 4 short of the correct answer then the number was

Question

One student is asked to divide a half of a number by 6 and other half by 4 and then to add the two quantities. Instead of doing so the student divides the given number by 5 . If the answer is 4 short of the correct answer then the number was

Options
(a) 320
(b) 400
(c) 480
(d) none of these

Question

One student is asked to divide a half of a number by 6 and other half by 4 and then to add the two quantities. Instead of doing so the student divides the given number by 5 . If the answer is 4 short of the correct answer then the number was

Options
$\begin{array}{llll}\text { (a) } 320 & \text { (b) } 400 & \text { (c) } 480 & \text { (d) none of these }\end{array}$

Question

The solution of the set of equations
$3 x+4 y=7,4 x-y=3$ is

Question

The solution of the set of equations
$3 x+4 y=7,4 x-y=3$ is
Options
(a) $(1,-1) \quad(b)(1,1) \quad(c)(2,1)$
(d)

Question

The solution of the set of equations
$3 x+4 y=7,4 x-y=3$ is
Options
$(\mathrm{a})(1,-1) \quad(\mathrm{b})(1,1) \quad(\mathrm{c})(2,1) \quad(\mathrm{d})$
$(1,-2)$

Question

The values of x and y satisfying the equations $\frac{x}{2}+\frac{y}{3}=2, x+2 y=8$ are given by the pair.

Question

The values of x and y satisfying the equations $\frac{x}{2}+\frac{y}{3}=2, x+2 y=8$ are given by the pair.

Options

$(\mathrm{a})(3,2) \quad(\mathrm{b})(-2,-3) \quad$ (c) $(2,3) \quad$ (d) none of these

Question

The values of x and y satisfying the equations $\frac{x}{2}+\frac{y}{3}=2, x+2 y=8$ are given by the pair.

Options

(a) $(3,2)$
(b) $(-2,-3)$
(c) $(2,3)$
(d) none of these

Question $\frac{x}{p}+\frac{y}{q}=2, x+y=p+q$ are satisfied by the values
 p q given by the pair.

Question

$\frac{x}{p}+\frac{y}{q}=2, x+y=p+q$ are satisfied by the values
 p q given by the pair.

Options

(a) $(x=p, y=q) \quad(b)(x=q, y=p)$ (c) $(x=1, y=1) \quad$ (d) none of these

Question

$\frac{x}{p}+\frac{y}{q}=2, x+y=p+q$ are satisfied by the values
 p q given by the pair.

Options

(a) $(x=p, y=q) \quad$ (b) $(x=q, y=p) \quad$ (c)
$(x=1, y=1) \quad$ (d) none of these

Question

The solution for the pair of equations
$\frac{1}{16 x}+\frac{1}{15 y}=\frac{9}{20}, \frac{1}{20 x}-\frac{1}{27 y}=\frac{4}{45}$ is given by

Question

The solution for the pair of equations
$\frac{1}{16 x}+\frac{1}{15 y}=\frac{9}{20}, \frac{1}{20 x}-\frac{1}{27 y}=\frac{4}{45}$ is given by
Options
$\begin{array}{llll}\text { (a) }(1 / 4,1 / 3) & \text { (b) }(1 / 3,1 / 4) & (c)(3,4) & \text { (d) }(4,3)\end{array}$

Question

The solution for the pair of equations
$\frac{1}{16 x}+\frac{1}{15 y}=\frac{9}{20}, \frac{1}{20 x}-\frac{1}{27 y}=\frac{4}{45}$ is given by
Options
$\begin{array}{llll}(a)(1 / 4,1 / 3) & \text { (b) }(1 / 3,1 / 4) & (c)(3,4) & (d)(4,3)\end{array}$

Question

Solve for x and $\mathrm{y}: \frac{4}{x}-\frac{5}{\mathrm{y}}=\frac{x+\mathrm{y}}{x y}+\frac{3}{10}$ and $3 x y=10(y-x)$.

Question

Solve for x and $\mathrm{y}: \frac{4}{x}-\frac{5}{\mathrm{y}}=\frac{x+\mathrm{y}}{x y}+\frac{3}{10}$ and $3 x y=10(y-x)$.

Options

(a) $(5,2) \quad(b)(-2,-5) \quad(c)(2,-5) \quad(d)(2,5)$

Question

Solve for x and $\mathrm{y}: \frac{4}{x}-\frac{5}{\mathrm{y}}=\frac{x+\mathrm{y}}{x y}+\frac{3}{10}$ and $3 x y=10(y-x)$.

Options

$$
(\mathrm{a})(5,2) \quad(b)(-2,-5) \quad(\mathrm{c})(2,-5) \quad(\mathrm{d})(2,5)
$$

Question

The pair satisfying the equations
 $x+5 y=36, \frac{x+y}{x-y}=\frac{5}{3}$ is given by

Question

The pair satisfying the equations
$x+5 y=36, \frac{x+y}{x-y}=\frac{5}{3}$ is given by
Options
(a) $(16,4) \quad(b)(4,16) \quad(c)(4,8) \quad(d)$ none of these

Question

The pair satisfying the equations
$x+5 y=36, \frac{x+y}{x-y}=\frac{5}{3}$ is given by
Options
(a) $(16,4) \quad(b)(4,16) \quad(c)(4,8) \quad(d)$ none of these

Question

Solve for x and $y: x-3 y=0, x+2 y=20$.

Question

Solve for x and $y: x-3 y=0, x+2 y=20$.

Options

$\begin{array}{lll}\text { (a) } x=4, y=12 & \text { (b) } x=12, y=4 & \text { (c) } x=5, y=4\end{array}$
(d) none of these

Question

Solve for x and $y: x-3 y=0, x+2 y=20$.

Options

$\begin{array}{lll}\text { (a) } x=4, y=12 & \text { (b) } x=12, y=4 & \text { (c) } x=5, y=4\end{array}$
(d) none of these

Question

The simultaneous equations $7 x-3 y=31,9 x-5 y=41$ have solutions given by

Question

The simultaneous equations $7 x-3 y=31,9 x-5 y=41$ have solutions given by

Options

$\begin{array}{lll}(a)(-4,-1) & (b)(-1,4) & (c)(4,-1) \quad(d)(3,7)\end{array}$

Question

The simultaneous equations
$7 x-3 y=31,9 x-5 y=41$ have solutions given by
Options

$$
(a)(-4,-1) \quad(b)(-1,4) \quad(c)(4,-1) \quad(d)(3,7)
$$

Question

$1.5 x+2.4 y=1.8,2.5(x+1)=7 y$ have solutions as

Question

$1.5 x+2.4 y=1.8,2.5(x+1)=7 y$ have solutions as

Options

(a) $(0.5,0.4)$
(b) $(0.4,0.5)$
(c) $\left(\frac{1}{2}, \frac{2}{5}\right)$

(d)

Question

$1.5 x+2.4 y=1.8,2.5(x+1)=7 y$ have solutions as

Options

(a) $(0.5,0.4)$
 (b) $(0.4,0.5)$
 (c) $\left(\frac{1}{2}, \frac{2}{5}\right)$
 (d)
 $(2,5)$

Question

The values of x and y satisfying the equations
$\frac{3}{x+y}+\frac{2}{x-y}=3, \frac{2}{x+y}+\frac{3}{x-y}=3 \frac{2}{3}$ are given by

Question

The values of x and y satisfying the equations
$\frac{3}{x+y}+\frac{2}{x-y}=3, \frac{2}{x+y}+\frac{3}{x-y}=3 \frac{2}{3}$ are given by

Options

$\begin{array}{lll}(a)(1,2) & (b)(-1,-2) & (c)\left(1, \frac{1}{2}\right) \\ (d)(2,1)\end{array}$

Question

The values of x and y satisfying the equations
$\frac{3}{x+y}+\frac{2}{x-y}=3, \frac{2}{x+y}+\frac{3}{x-y}=3 \frac{2}{3}$ are given
by

Options

$$
(a)(1,2) \quad(b)(-1,-2) \quad(c)\left(1, \frac{1}{2}\right) \quad(d)(2,1)
$$

Question

$1.5 x+3.6 y=2.1,2.5(x+1)=6 y$

Question

$1.5 x+3.6 y=2.1,2.5(x+1)=6 y$

Options

(a) $(0.2,0.5) \quad(b)(0.5,0.2) \quad(c)(2,5) \quad(d)$ $(-2,-5)$

Question

$1.5 x+3.6 y=2.1,2.5(x+1)=6 y$
Options
(a) $(0.2,0.5) \quad$ (b) $(0.5,0.2) \quad$ (c) $(2,5) \quad$ (d)
$(-2,-5)$

Question
 $\frac{x}{5}+\frac{y}{6}+1=\frac{x}{6}+\frac{y}{5}=28$

Question
 $\frac{x}{5}+\frac{y}{6}+1=\frac{x}{6}+\frac{y}{5}=28$

Options

(a) $(6,9)(b)(9,6)(c)(60,90)(d)$ $(90,60)$

Question

$\frac{x}{5}+\frac{y}{6}+1=\frac{x}{6}+\frac{y}{5}=28$
Options
(a) $(6,9) \quad(b)(9,6) \quad(c)(60,90) \quad(d)$
$(90,60)$

Question $\frac{x}{4}=\frac{y}{3}=\frac{z}{2} ; 7 x+8 y+5 z=62$

Question $\frac{x}{4}=\frac{y}{3}=\frac{z}{2} ; 7 x+8 y+5 z=62$

Options

$\begin{array}{lll}(a)(4,3,2) & (b)(2,3,4) & \text { (c) }(3,4,2) \quad(d)(4,2,3)\end{array}$

Question
$\frac{x}{4}=\frac{y}{3}=\frac{z}{2} ; 7 x+8 y+5 z=62$
Options
$\begin{array}{llll}(a)(4,3,2) & (b)(2,3,4) & \text { (c) }(3,4,2) \quad(d)(4,2,3)\end{array}$

Question

$$
\frac{x y}{x+y}=20, \frac{y z}{y+z}=40, \frac{z x}{z+x}=24
$$

Question

$\frac{x y}{x+y}=20, \frac{y z}{y+z}=40, \frac{z x}{z+x}=24$

Options

(a) $(120,60,30) \quad(b)(60,30,120) \quad(c)(30,120$, 60) (d) $(30,60,120)$

Question

$$
\frac{x y}{x+y}=20, \frac{y z}{y+z}=40, \frac{z x}{z+x}=24
$$

Options
(a) $(120,60,30)(b)(60,30,120) \quad(c)(30,120$, 60) (d) $(30,60,120)$

Question

$$
2 x+3 y+4 z=0, x+2 y-5 z=0,10 x+16 y-6 z=0
$$

Question

$2 x+3 y+4 z=0, x+2 y-5 z=0,10 x+16 y-6 z=0$

Options

(a) $(0,0,0) \quad$ (b) $(1,-1,1) \quad$ (c) $(3,2,-1) \quad$ (d) $(1$, 0,2)

Question

$2 x+3 y+4 z=0, x+2 y-5 z=0,10 x+16 y-6 z=0$

Options

$\begin{array}{llll}\text { (a) }(0,0,0) & (b)(1,-1,1) & (c)(3,2,-1) & (d)(1,\end{array}$ $0,2)$

Question

$\frac{1}{3}(x+y)+2 z=21,3 x-\frac{1}{2}(y+z)=$
$65, x+\frac{1}{2}(x+y-z)=38$

Question

$$
\begin{aligned}
& \frac{1}{3}(x+y)+2 z=21,3 x-\frac{1}{2}(y+z)= \\
& 65, x+\frac{1}{2}(x+y-z)=38
\end{aligned}
$$

Options

(a) $(4,9,5) \quad(b)(2,9,5) \quad$ (c) $(24,9,5) \quad(d)$
$(5,24,9)$

Question

$$
\begin{aligned}
& \frac{1}{3}(x+y)+2 z=21,3 x-\frac{1}{2}(y+z)= \\
& 65, x+\frac{1}{2}(x+y-z)=38
\end{aligned}
$$

Options

(a) $(4,9,5)$
(b) $(2,9,5)$
(c) $(24,9,5)$
(d)
$(5,24,9)$

Question
 $$
\frac{4}{x}-\frac{5}{y}=\frac{x+y}{x y}+\frac{3}{10}, 3 x y=10(y-x)
$$

Question

$$
\frac{4}{x}-\frac{5}{y}=\frac{x+y}{x y}+\frac{3}{10}, 3 x y=10(y-x)
$$

Options

$$
(\mathrm{a})(2,5) \quad(\mathrm{b})(5,2) \quad(\mathrm{c})(2,7) \quad(d)(3,4)
$$

Question

$$
\frac{4}{x}-\frac{5}{y}=\frac{x+y}{x y}+\frac{3}{10}, 3 x y=10(y-x)
$$

Options

(a) $(2,5)$
(b) $(5,2)$
(c) $(2,7)$
(d) $(3,4)$

Question

$\frac{x}{0.01}+\frac{y+0.03}{0.05}=\frac{y}{0.02}+\frac{x+0.03}{0.04}=2$

Question

$\frac{x}{0.01}+\frac{y+0.03}{0.05}=\frac{y}{0.02}+\frac{x+0.03}{0.04}=2$

Options

(a) $(1,2)$ (b) $(0.1,0.2) \quad$ (c) $(0.01,0.02)$ (0.02, 0.01)

Question

$\frac{x}{0.01}+\frac{y+0.03}{0.05}=\frac{y}{0.02}+\frac{x+0.03}{0.04}=2$
Options
(a) $(1,2)$
(b) $(0.1,0.2)$
(c) $(0.01,0.02)$
(d)
(0.02, 0.01)

Question

$\frac{x y}{y-x}=110, \frac{y z}{z-y}=132, \frac{z x}{z+x}=\frac{60}{11}$

Question

$\frac{x y}{y-x}=110, \frac{y z}{z-y}=132, \frac{z x}{z+x}=\frac{60}{11}$

Options

(a) $(12,11,10)$ (b) $(10,11,12) \quad(c)$ $(11,10,12) \quad(d)(12,10,11)$

Question

$\frac{x y}{y-x}=110, \frac{y z}{z-y}=132, \frac{z x}{z+x}=\frac{60}{11}$

Options

(a) $(12,11,10) \quad(b)(10,11,12) \quad(c)$
$(11,10,12) \quad(d)(12,10,11)$

Question
 $3 x-4 y+70 z=0,2 x+3 y-10 z=0, x+2 y+3 z=13$

Question

$3 x-4 y+70 z=0,2 x+3 y-10 z=0, x+2 y+3 z=13$

Options

(a) $(1,3,7) \quad(b)(1,7,3) \quad(c)(2,4,3) \quad$ (d) $(-10,10,1)$

Question

$3 x-4 y+70 z=0,2 x+3 y-10 z=0, x+2 y+3 z=13$

Options

$\begin{aligned} & (a) \\ & (-10,10,1)\end{aligned}$

Question

Monthly incomes of two persons are in the ratio 4 : 5 and their monthly expenses are in the ratio 7: 9. If each saves Rs. 50 per month find their monthly incomes.

Question

Monthly incomes of two persons are in the ratio 4 : 5 and their monthly expenses are in the ratio 7: 9. If each saves Rs. 50 per month find their monthly incomes.

Options

(a) $(500,400) \quad$ (b) $(400,500) \quad$ (c) $(300,600)$
(d) $(350,550)$

Question

Monthly incomes of two persons are in the ratio 4 : 5 and their monthly expenses are in the ratio 7: 9. If each saves Rs. 50 per month find their monthly incomes.

Options
(a) $(500,400) \quad$ (b) $(400,500) \quad$ (c) $(300,600)$
(d) $(350,550)$

Question

Find the fraction which is equal to $1 / 2$ when both its numerator and denominator are increased by 2 . It is equal to $3 / 4$ when both are increased by 12 .

Question

Find the fraction which is equal to $1 / 2$ when both its numerator and denominator are increased by 2 . It is equal to $3 / 4$ when both are increased by 12 .

Options

(a) $3 / 8$
(b) $5 / 8$
(c) $2 / 8$
(d) $2 / 3$

Question

Find the fraction which is equal to $1 / 2$ when both its numerator and denominator are increased by 2 . It is equal to $3 / 4$ when both are increased by 12 .

Options

$\begin{array}{llll}\text { (a) } 3 / 8 & \text { (b) } 5 / 8 & \text { (c) } 2 / 8 & \text { (d) } 2 / 3\end{array}$

Question

The age of a person is twice the sum of the ages of his two sons and five years ago his age was thrice the sum of their ages. Find his present age.

Question

The age of a person is twice the sum of the ages of his two sons and five years ago his age was thrice the sum of their ages. Find his present age.

Options
 (a) 60 years (b) 52 years (c) 51 years (d) 50 years

Question

The age of a person is twice the sum of the ages of his two sons and five years ago his age was thrice the sum of their ages. Find his present age.

Options

(a) 60 years (b) 52 years \quad (c) 51 years (d) 50 years

Question
 A number between 10 and 100 is five times the sum of its digits. If 9 be added to it the digits are reversed find the number.

Question

A number between 10 and 100 is five times the sum of its digits. If 9 be added to it the digits are reversed find the number.

Options

(a) 54
(b) 53
(c) 45
(d) 55

Question

A number between 10 and 100 is five times the sum of its digits. If 9 be added to it the digits are reversed find the number.

Options
(a) 54
(b) 53
(c) 45
(d) 55

Question

The wages of 8 men and 6 boys amount to Rs.33. If 4 men earn Rs. 4.50 more than 5 boys determine the wages of each man and boy.

Question

The wages of 8 men and 6 boys amount to Rs.33. If 4 men earn Rs. 4.50 more than 5 boys determine the wages of each man and boy.

Options

Question

The wages of 8 men and 6 boys amount to Rs.33. If 4 men earn Rs. 4.50 more than 5 boys determine the wages of each man and boy.

Options
(a) (Rs. 1.50, Rs. 3) (b) (Rs. 3, Rs. 1.50)
(c)
(Rs. 2.50, Rs. 2) (d) (Rs. 2, Rs. 2.50)

Question

A number consisting of two digits is four times the sum of its digits and if 27 be added to it the digits are reversed. The number is :

Question

A number consisting of two digits is four times the sum of its digits and if 27 be added to it the digits are reversed. The number is :

Options

$\begin{array}{llll}\text { (a) } 63 & \text { (b) } 35 & \text { (c) } 36 & \text { (d) } 60\end{array}$

Question

A number consisting of two digits is four times the sum of its digits and if 27 be added to it the digits are reversed. The number is :

Options
(a) 63
(b) 35
(c) 36
(d) 60

Question
 Of two numbers, $1 / 5$ th of the greater is equal to $1 / 3 \mathrm{rd}$ of the smaller and their sum is 16 . The numbers are:

Question
 Of two numbers, $1 / 5$ th of the greater is equal to $1 / 3 \mathrm{rd}$ of the smaller and their sum is 16 . The numbers are:

Options

(a) $(6,10)$
(b) $(9,7)$
(c) $(12,4)$
(d) $(11,5)$

Question

Of two numbers, $1 / 5$ th of the greater is equal to $1 / 3 \mathrm{rd}$ of the smaller and their sum is 16 . The numbers are:

Options
(a) $(6,10)$
(b) $(9,7)$
(c) $(12,4)$
(d) $(11,5)$

Question

y is older than x by 7 years 15 years back x's age was $3 / 4$ of y 's age. Their present ages are:

Question

y is older than x by 7 years 15 years back x's age was $3 / 4$ of y 's age. Their present ages are:

Options
(a) $(x=36, y=43) \quad$ (b) $(x=50, y=43) \quad(c)(x=43$, $y=50) \quad(d) \quad(x=40, y=47)$

Question

y is older than x by 7 years 15 years back x's age was $3 / 4$ of y 's age. Their present ages are:

Options

Question

The sum of the digits in a three digit number is 12 . If the digits are reversed the number is increased by 495 but reversing only of the ten's and unit digits increases the number by 36 . The number is

Question

The sum of the digits in a three digit number is 12 . If the digits are reversed the number is increased by 495 but reversing only of the ten's and unit digits increases the number by 36 . The number is

Options
$\begin{array}{llll}\text { (a) } 327 & \text { (b) } 372 & \text { (c) } 237 & \text { (d) } 273\end{array}$

Question

The sum of the digits in a three digit number is 12 . If the digits are reversed the number is increased by 495 but reversing only of the ten's and unit digits increases the number by 36 . The number is

Options
(a) 327
(b) 372
(c) 237
(d) 273

Question

Two numbers are such that twice the greater number exceeds twice the smaller one by 18 and $1 / 3^{\text {rd }}$ of the smaller and $1 / 5^{\text {th }}$ of the greater number are together 21 . The numbers are:

Question

Two numbers are such that twice the greater number exceeds twice the smaller one by 18 and $1 / 3^{\text {rd }}$ of the smaller and $1 / 5^{\text {th }}$ of the greater number are together 21 . The numbers are:

Options
(a) $(36,45) \quad(b)(45,36) \quad(c)(50,41) \quad(d)(55$, 46)

Question

Two numbers are such that twice the greater number exceeds twice the smaller one by 18 and $1 / 3^{\text {rd }}$ of the smaller and $1 / 5^{\text {th }}$ of the greater number are together 21 . The numbers are:

Options
(a) $(36,45) \quad(b)(45,36) \quad$ (c) $(50,41) \quad(d)(55$, 46)

Question

The demand and supply equations for a certain commodity are $4 \mathrm{q}+7 \mathrm{p}=17$ and $\mathrm{p}=\frac{\mathrm{q}}{3}+\frac{7}{4}$. respectively where p is the market price and q is the quantity then the equilibrium price and quantity are:

Question

The demand and supply equations for a certain commodity are $4 q+7 p=17$ and $p=\frac{q}{3}+\frac{7}{4}$. respectively where p is the market price and q is the quantity then the equilibrium price and quantity are:

Options

Question

The demand and supply equations for a certain commodity are $4 \mathrm{q}+7 \mathrm{p}=17$ and $\mathrm{p}=\frac{\mathrm{q}}{3}+\frac{7}{4}$. respectively where p is the market price and q is the quantity then the equilibrium price and quantity are:

Options

$\begin{array}{llll}\text { (a) } 2^{\frac{3}{4}} & \text { (b) } 3^{\frac{1}{2}} & \text { (c) } 5^{\frac{3}{5}} & \text { (d) None of these }\end{array}$

Question
 If the roots of the equation $2 x^{2}+8 x-m^{3}=0$ are equal then value of m is

Question

If the roots of the equation $2 x^{2}+8 x-m^{3}=0$ are equal then value of m is

Options

(a) -3
(b) -1
(c) 1
(d) -2

Question

If the roots of the equation $2 x^{2}+8 x-m^{3}=0$ are equal then value of m is

Options
(a) -3
(b) -1
(c) 1
(d) -2

Question

If $2^{2 x+3}-3^{2} \cdot 2^{x}+1=0$ then values of x are

Question

If $2^{2 x+3}-3^{2} .2^{x}+1=0$ then values of x are

Options

(a) 0,1
(b) 1, 2
(c) 0,3
(d) $0,-3$

Question

If $2^{2 x+3}-3^{2} \cdot 2^{x}+1=0$ then values of x are

Options

(a) 0,1
(b) 1, 2
(c) 0,3
(d) $0,-3$

Question

The values of $4+\frac{1}{4+\frac{1}{4+\frac{1}{4+\ldots \infty}}}$

Question

The values of $4+\frac{1}{4+\frac{1}{4+\frac{1}{4+\ldots \infty}}}$

Options

(a) $1 \pm \sqrt{2}$
(b) $2+\sqrt{5}$
(c) $2 \pm \sqrt{5}$
(d) none of these

Question

The values of $4+\frac{1}{4+\frac{1}{4+\frac{1}{4+\ldots \infty}}}$

Options

(a) $1 \pm \sqrt{2}$
(b) $2+\sqrt{5}$
(c) $2 \pm \sqrt{5}$
(d) none of these

Question

If $\alpha \beta$ be the roots of the equation $2 x^{2}-4 x-3=0$ the value of $\alpha^{2}+\beta^{2}$ is

Question

If $\alpha \beta$ be the roots of the equation $2 x^{2}-4 x-3=0$ the value of $\alpha^{2}+\beta^{2}$ is

Options

(a) 5
(b) 7
(c) 3
(d) -4

Question

If $\alpha \beta$ be the roots of the equation $2 x^{2}-4 x-3=0$ the value of $\alpha^{2}+\beta^{2}$ is

Options

(a) 5
(b) 7
(c) 3
(d) -4

Question

If the sum of the roots of the quadratic equation
$a x^{2}+b x+c=0$ is equal to the sum of the squares
of their reciprocals then $\frac{a^{2}}{a c}+\frac{b c}{a^{2}}$ is equal to

Question

If the sum of the roots of the quadratic equation
$a x^{2}+b x+c=0$ is equal to the sum of the squares
of their reciprocals then $\frac{a^{2}}{a c}+\frac{b c}{a^{2}}$ is equal to

Options

(a) 2
(b) -2
(c) 1
(d) -1

Question

If the sum of the roots of the quadratic equation $a x^{2}+b x+c=0$ is equal to the sum of the squares of their reciprocals then $\frac{a^{2}}{a c}+\frac{b c}{a^{2}}$ is equal to

Options

(a) 2
(b) -2
(c) 1
(d) -1

Question

The equation $x^{2}-(p+4) x+2 p+5=0$ has equal roots the values of p will be

Question

The equation $x^{2}-(p+4) x+2 p+5=0$ has equal roots the values of p will be

Options

(a) ± 1
(b) 2
(c) $\pm 2 \quad$ (d) -2

Question

The equation $x^{2}-(p+4) x+2 p+5=0$ has equal roots the values of p will be

Options

(a) ± 1
(b) 2
(c) ± 2
(d) -2

Question

The roots of the equation $x^{2}+(2 p-1) x+p^{2}=0$ are real if

Question

The roots of the equation $x^{2}+(2 p-1) x+p^{2}=0$ are real if

Options

$\begin{array}{llll}\text { (a) } p>1 & \text { (b) } p<4 & \text { (c) } p>1 / 4 & \text { (d) } p<1 / 4\end{array}$

Question

The roots of the equation $x^{2}+(2 p-1) x+p^{2}=0$ are real if

Options

$\begin{array}{llll}\text { (a) } p>1 & \text { (b) } p<4 & \text { (c) } p>1 / 4 & \text { (d) } p<1 / 4\end{array}$

Question

If $x=m$ is one of the solutions of the equation $2 x^{2}+5 x-m=0$ the possible values of m are

Question

If $x=m$ is one of the solutions of the equation $2 x^{2}+5 x-m=0$ the possible values of m are

Options

$(a)(0,2) \quad(b)(0,-2) \quad(c)(0,1) \quad(d)(1,-1)$

Question

If $x=m$ is one of the solutions of the equation $2 x^{2}+5 x-m=0$ the possible values of m are

Options

$$
(\mathrm{a})(0,2) \quad(\mathrm{b})(0,-2) \quad(\mathrm{c})(0,1) \quad(\mathrm{d}) \quad(1,-1)
$$

Question

If p and q are the roots of $x^{2}+2 x+1=0$ then the values of $p^{3}+q^{3}$ becomes

Question

If p and q are the roots of $x^{2}+2 x+1=0$ then the values of $p^{3}+q^{3}$ becomes

Options

(a) 2
(b) -2
(c) 4
(d) -4

Question

If p and q are the roots of $x^{2}+2 x+1=0$ then the values of $p^{3}+q^{3}$ becomes

Options

(a) 2
(b) -2
(c) $4 \quad(d)-4$

Question

If $\mathrm{L}+\mathrm{M}+\mathrm{N}=0$ and $\mathrm{L}, \mathrm{M}, \mathrm{N}$ are rationals the roots of the equation
$(\mathrm{M}+\mathrm{N}-\mathrm{L}) x^{2}+(\mathrm{N}+\mathrm{L}-\mathrm{M}) x+(\mathrm{L}+\mathrm{M}-\mathrm{N})=0$ are

Question

If $\mathrm{L}+\mathrm{M}+\mathrm{N}=0$ and $\mathrm{L}, \mathrm{M}, \mathrm{N}$ are rationals the roots of the equation
$(\mathrm{M}+\mathrm{N}-\mathrm{L}) x^{2}+(\mathrm{N}+\mathrm{L}-\mathrm{M}) x+(\mathrm{L}+\mathrm{M}-\mathrm{N})=0$ are

Options

(a) real and irrational (b) real and rational imaginary and equal (d) real and equal

Question

If $\mathrm{L}+\mathrm{M}+\mathrm{N}=0$ and $\mathrm{L}, \mathrm{M}, \mathrm{N}$ are rationals the roots of the equation
$(\mathrm{M}+\mathrm{N}-\mathrm{L}) x^{2}+(\mathrm{N}+\mathrm{L}-\mathrm{M}) x+(\mathrm{L}+\mathrm{M}-\mathrm{N})=0$ are

Options

(a) real and irrational
(b) real and rational imaginary and equal (d) real and equal

Question

If α and β are the roots of $x^{2}=x+1$ then value of
$\frac{\alpha^{2}}{\beta}-\frac{\beta^{2}}{\alpha}$ is

Question

If α and β are the roots of $x^{2}=x+1$ then value of
$\frac{\alpha^{2}}{\beta}-\frac{\beta^{2}}{\alpha}$ is

Options

(a) $2 \sqrt{5}$
(b) $\sqrt{5}$
(c) $3 \sqrt{5}$
(d) $-2 \sqrt{5}$

Question

If α and β are the roots of $x^{2}=x+1$ then value of $\frac{\alpha^{2}}{\beta}-\frac{\beta^{2}}{\alpha}$ is

Options

(a) $2 \sqrt{5}$
(b) $\sqrt{5}$
(c) $3 \sqrt{5}$
(d) $-2 \sqrt{5}$

Question

If $\mathrm{p} \neq \mathrm{q}$ and $\mathrm{p}^{2}=5 \mathrm{p}-3$ and $\mathrm{q}^{2}=5 \mathrm{q}-3$ the equation having roots as $\frac{p}{q}$ and $\frac{q}{p}$ is

Question

If $\mathrm{p} \neq \mathrm{q}$ and $\mathrm{p}^{2}=5 \mathrm{p}-3$ and $\mathrm{q}^{2}=5 \mathrm{q}-3$ the equation having roots as $\frac{p}{q}$ and $\frac{q}{p}$ is

Options

$\begin{array}{ll}\text { (a) } x^{2}-19 x+3=0 & \text { (b) } 3 x^{2}-19 x-3=0\end{array}$
$\begin{array}{ll}\text { (c) } 3 x^{2}-19 x+3=0 & \text { (d) } 3 x^{2}+19 x+3=0\end{array}$

Question

If $\mathrm{p} \neq \mathrm{q}$ and $\mathrm{p}^{2}=5 \mathrm{p}-3$ and $\mathrm{q}^{2}=5 \mathrm{q}-3$ the equation having roots as $\frac{p}{q}$ and $\frac{q}{p}$ is

Options

$$
\begin{array}{ll}
\text { (a) } x^{2}-19 x+3=0 & \text { (b) } 3 x^{2}-19 x-3=0 \\
\text { (c) } 3 x^{2}-19 x+3=0 & \text { (d) } 3 x^{2}+19 x+3=0
\end{array}
$$

Question
 If one root of $5^{2} x+13 x+p=0$ be reciprocal of the other then the value of p is

Question

If one root of $5^{2} x+13 x+p=0$ be reciprocal of the other then the value of p is

Options

(a) -5
(b) 5
(c) $1 / 5$
(d) $-1 / 5$

Question

If one root of $5^{2} x+13 x+p=0$ be reciprocal of the other then the value of p is

Options

(a) -5
(b) 5
(c) $1 / 5$
(d) $-1 / 5$

Question

A solution of the quadratic equation
$(\mathrm{a}+\mathrm{b}-2 \mathrm{c}) \mathrm{x}^{2}+(2 \mathrm{a}-\mathrm{b}-\mathrm{c}) \mathrm{x}+(\mathrm{c}+\mathrm{a}-2 \mathrm{~b})=0$ is

Question

A solution of the quadratic equation $(\mathrm{a}+\mathrm{b}-2 \mathrm{c}) x^{2}+(2 \mathrm{a}-\mathrm{b}-\mathrm{c}) x+(\mathrm{c}+\mathrm{a}-2 \mathrm{~b})=0$ is

Options
$\begin{array}{lll}\text { (a) } x=1 & \text { (b) } x=-1 & \text { (c) } x=2\end{array} \quad$ (d)
$x=-2$

Question

A solution of the quadratic equation
$(\mathrm{a}+\mathrm{b}-2 \mathrm{c}) \mathrm{x}^{2}+(2 \mathrm{a}-\mathrm{b}-\mathrm{c}) \mathrm{x}+(\mathrm{c}+\mathrm{a}-2 \mathrm{~b})=0$ is

Options

$\begin{array}{lll}\text { (a) } x=1 & \text { (b) } x=-1 & \text { (c) } x=2\end{array} \quad$ (d)
$x=-2$

Question

If the root of the equation $x^{2}-8 x+m=0$ exceeds the other by 4 then the value of m is

Question

If the root of the equation $x^{2}-8 x+m=0$ exceeds the other by 4 then the value of m is

Options

$\begin{array}{ll}\text { (a) } \mathrm{m}=10 & \text { (b) mathrmm }=11\end{array}$
$\begin{array}{ll}\text { (c) mathrmm }=9 & \text { (d) mathrmm }=12\end{array}$

Question

If the root of the equation $x^{2}-8 x+m=0$ exceeds the other by 4 then the value of m is

Options

$$
\begin{aligned}
& \text { (a) } \mathrm{m}=10 \\
& \begin{array}{ll}
\text { (b) mathrmm }=11 \\
\text { (c) mathrmm }=9 & \text { (d) mathrmm }=12
\end{array}
\end{aligned}
$$

Question

The values of x in the equation $7(x+2 p)^{2}+5 p^{2}=35 x p+117 p^{2}$ are

Question

The values of x in the equation $7(x+2 p)^{2}+5 p^{2}=35 x p+117 p^{2}$ are

Options

(a) $(4 \mathrm{p},-3 \mathrm{p}) \quad(\mathrm{b})(4 \mathrm{p}, 3 \mathrm{p}) \quad(\mathrm{c})(A \mathrm{p}, 3 \mathrm{p})$
(d) $(-4 p,-3 p)$

Question

The values of x in the equation $7(x+2 p)^{2}+5 p^{2}=35 x p+117 p^{2}$ are

Options
(a) $(4 p,-3 p)$
(b) $(4 p, 3 p)$
(c) $(A p, 3 p)$
(d) $(-4 p,-3 p)$

Question

The solutions of the equation
$\frac{6 x}{x+1}+\frac{6(x+1)}{x}=13$ are

Question

The solutions of the equation
$\frac{6 x}{x+1}+\frac{6(x+1)}{x}=13$ are

Options

(a) $(2,3)$
(b) $(3,-2)$
(c) $(-2,-3)$
(d) $(2,-3)$

Question

The solutions of the equation
$\frac{6 x}{x+1}+\frac{6(x+1)}{x}=13$ are

Options

(a) $(2,3)$
(b) $(3,-2)$
(c) $(-2,-3)$
(d) $(2,-3)$

Question

The satisfying values of x for the equation
$\frac{1}{x+p+q}=\frac{1}{x}+\frac{1}{p}+\frac{1}{q}$

Question

The satisfying values of x for the equation
$\frac{1}{x+p+q}=\frac{1}{x}+\frac{1}{p}+\frac{1}{q}$

Options

(a) $(\mathrm{p}, \mathrm{q}) \quad(\mathrm{b})(-\mathrm{p},-\mathrm{q}) \quad(\mathrm{c})(\mathrm{p},-\mathrm{p})$
(d) $(-p, q)$

Question

The satisfying values of x for the equation
$\frac{1}{x+p+q}=\frac{1}{x}+\frac{1}{p}+\frac{1}{q}$
Options
(a) $(p, q) \quad(b)(-p,-q) \quad(c)(p,-p)$
(d) $(-p, q)$

Question
 The values of x for the equation
 $x^{2}+9 x+18=6-4 x$ are

Question

The values of x for the equation
$x^{2}+9 x+18=6-4 x$ are

Options

$$
\begin{aligned}
& \text { (a) }(1,12) \\
& \text { (d) }(-1,12)
\end{aligned}
$$

Question

The values of x for the equation
$x^{2}+9 x+18=6-4 x$ are
Options

$$
\begin{aligned}
& \text { (a) }(1,12) \\
& \text { (d) }(-1,12)
\end{aligned}
$$

Question

The values of x satisfying the equation
$\sqrt{\left(2 x^{2}+5 x-2\right)}-\sqrt{\left(2 x^{2}+5 x-9\right)}=1$ are

Question

The values of x satisfying the equation
$\sqrt{\left(2 x^{2}+5 x-2\right)}-\sqrt{\left(2 x^{2}+5 x-9\right)}=1$ are

Options

$\begin{array}{lll}\text { (a) }(2,-9 / 2) & (b)(4,-9) & \text { (c) }(2,9 / 2)\end{array}$
(d) $(-2,9 / 2)$

Question

The values of x satisfying the equation $\sqrt{\left(2 x^{2}+5 x-2\right)}-\sqrt{\left(2 x^{2}+5 x-9\right)}=1$ are

Options

(a) $(2,-9 / 2)$
(b) $(4,-9)$
(c) $(2,9 / 2)$
(d) $(-2,9 / 2)$

Question

The solution of the equation $3 x^{2}-17 x+24=0$ are

Question

The solution of the equation $3 x^{2}-17 x+24=0$ are

Options

(a) $(2,3)$
(b) $\left(2,3 \frac{2}{3}\right)$
(c) $\left(3,2 \frac{2}{3}\right)$
(d) $\left(3, \frac{2}{3}\right)$

Question

The solution of the equation $3 x^{2}-17 x+24=0$ are

Options

(a) $(2,3)$
(b) $\left(2,3 \frac{2}{3}\right)$
(c) $\left(3,2 \frac{2}{3}\right)$
(d) $\left(3, \frac{2}{3}\right)$

Question

$$
\begin{aligned}
& \text { The equation } \frac{3\left(3 x^{2}+15\right)}{6}+2 x^{2}+9=\frac{2 x^{2}+96}{7}+6 \\
& \text { has got the solution as }
\end{aligned}
$$

Question

$$
\begin{aligned}
& \text { The equation } \frac{3\left(3 x^{2}+15\right)}{6}+2 x^{2}+9=\frac{2 x^{2}+96}{7}+6 \\
& \text { has got the solution as }
\end{aligned}
$$

Options

(a) $(1,1)$
(b) $(1 / 2,-1)$
(c) $(1,-1)$
(d) $(2,-1)$

Question

The equation $\frac{3\left(3 x^{2}+15\right)}{6}+2 x^{2}+9=\frac{2 x^{2}+96}{7}+6$ has got the solution as

Options

$$
\begin{aligned}
& \begin{array}{l}
\text { (a) }(1,1) \\
\text { (d) }(2,-1)
\end{array} \quad(b)(1 / 2,-1) \quad(c)(1,-1)
\end{aligned}
$$

Question

The equation $\left(\frac{l-\mathrm{m}}{2}\right) x^{2}-\left(\frac{l+\mathrm{m}}{2}\right) x+\mathrm{m}=0$ has got two values of x to satisfy the equation given as

Question

The equation $\left(\frac{I-\mathrm{m}}{2}\right) x^{2}-\left(\frac{I+\mathrm{m}}{2}\right) x+\mathrm{m}=0$ has got two values of x to satisfy the equation given as

Options

Question

The equation $\left(\frac{I-\mathrm{m}}{2}\right) x^{2}-\left(\frac{I+\mathrm{m}}{2}\right) x+\mathrm{m}=0$ has got two values of x to satisfy the equation given as

Options

$$
\begin{array}{ll}
\text { (a) }\left(1, \frac{2 \mathrm{~m}}{l-\mathrm{m}}\right) & \text { (b) }\left(1, \frac{\mathrm{~m}}{l-\mathrm{m}}\right) \quad \text { (c) }\left(1, \frac{2 l}{l-\mathrm{m}}\right)
\end{array}
$$

Question

The solution of the cubic equation $x^{3}-6 x^{2}+11 x-6=0$ is given by the triplet :

Question

The solution of the cubic equation $x^{3}-6 x^{2}+11 x-6=0$ is given by the triplet :

Options

(a) $(-1,1-2) \quad(b)(1,2,3) \quad(c)(-2,2,3)$
(d) $(0,4,-5)$

Question

The solution of the cubic equation $x^{3}-6 x^{2}+11 x-6=0$ is given by the triplet :

Options

(a) $(-1,1-2)$
(b) $(1,2,3)$
(c) $(-2,2,3)$
(d) $(0,4,-5)$

Question

The cubic equation $x^{3}+2 x^{2}-x-2=0$ has 3 roots namely.

Question

The cubic equation $x^{3}+2 x^{2}-x-2=0$ has 3 roots namely.

Options

(a) $(1,-1,2) \quad(b)(-1,1,-2) \quad(c)(-1,2,-2)$
(d) $(1,2,2)$

Question

The cubic equation $x^{3}+2 x^{2}-x-2=0$ has 3 roots namely.

Options

$$
\begin{array}{lll}
\begin{array}{ll}
\text { (a) }(1,-1,2) & \text { (b) }(-1,1,-2) \\
\text { (d) }(1,2,2) & \text { (c) }(-1,2,-2)
\end{array}
\end{array}
$$

Question

$x, x-4, x+5$ are the factors of the lefthand side of the equation.

Question

$x, x-4, x+5$ are the factors of the lefthand side of the equation.

Options

$\begin{array}{ll}\text { (a) } x^{3}+2 x^{2}-x-2=0 & \text { (b) } x^{3}+x^{2}-20 x=0\end{array}$
(c) $x^{3}-3 x^{2}-4 x+12=0 \quad$ (d)
$x^{3}-6 x^{2}+11 x-6=0$

Question

$x, x-4, x+5$ are the factors of the lefthand side of the equation.

Options

$$
\begin{array}{ll}
\begin{array}{ll}
\text { (a) } x^{3}+2 x^{2}-x-2=0 & \text { (b) } x^{3}+x^{2}-20 x=0 \\
\text { (c) } x^{3}-3 x^{2}-4 x+12=0 & \text { (d) } \\
x^{3}-6 x^{2}+11 x-6=0 &
\end{array}
\end{array}
$$

Question

The equation $3 x^{3}+5 x^{2}=3 x+5$ has got 3 roots and hence the factors of the left hand side of the equation $3 x^{3}+5 x^{2}-3 x-5=0$ are

Question

The equation $3 x^{3}+5 x^{2}=3 x+5$ has got 3 roots and hence the factors of the left hand side of the equation $3 x^{3}+5 x^{2}-3 x-5=0$ are

Options

$\begin{array}{ll}\text { (a) } x-1, x-2, x-5 / 3 & \text { (b) } x-1, x+1,3 x+5\end{array}$
$\begin{array}{ll}\text { (c) } x+1, x-1,3 x-5 & \text { (d) } x-1, x+1, x-2\end{array}$

Question

The equation $3 x^{3}+5 x^{2}=3 x+5$ has got 3 roots and hence the factors of the left hand side of the equation $3 x^{3}+5 x^{2}-3 x-5=0$ are

Options

(a) $x-1, x-2, x-5 / 3$
(b) $x-1, x+1,3 x+5$
(c) $x+1, x-1,3 x-5$
(d) $x-1, x+1, x-2$

Question
 The roots of the equation $x^{3}+7 x^{2}-21 x-27=0$ are

Question

The roots of the equation $x^{3}+7 x^{2}-21 x-27=0$ are

Options
 (a) $(-3,-9,-1) \quad$ (b) $(3,-9,-1) \quad$ (c)
 $(3,9,1) \quad(d)(-3,9,1)$

Question

The roots of the equation $x^{3}+7 x^{2}-21 x-27=0$ are

Options

(a) $(-3,-9,-1) \quad$ (b) $(3,-9,-1) \quad$ (c)
$(3,9,1) \quad(\mathrm{d})(-3,9,1)$

Question
 The roots of $x^{3}+x^{2}-x-1=0$ are

Question

The roots of $x^{3}+x^{2}-x-1=0$ are

Options

$$
\begin{array}{ll}
\begin{array}{ll}
\text { (a) }(-1,-1,1) & \text { (b) }(1,1,-1) \\
(-1,-1,-1) & \text { (d) }(1,1,1)
\end{array}
\end{array}
$$

Question

The roots of $x^{3}+x^{2}-x-1=0$ are

Options

(a) $(-1,-1,1) \quad$ (b) $(1,1,-1) \quad$ (c)
$(-1,-1,-1) \quad(d)(1,1,1)$

Question

The satisfying value of $x^{3}+x^{2}-20 x=0$ are

Question

The satisfying value of $x^{3}+x^{2}-20 x=0$ are

Options

(a) $(1,4,-5)$
(b) $(2,4,-5)$
(c) $(0$,
$-4,5)$
(d) $(0,4,-5)$

Question

The satisfying value of $x^{3}+x^{2}-20 x=0$ are

Options

(a) $(1,4,-5)$
(b) $(2,4,-5)$
(c) $(0,-4,5)$
(d) $(0,4,-5)$

Question
 The roots of the cubic equation
 $x^{3}+7 x^{2}-21 x-27=0$ are

Question

The roots of the cubic equation
$x^{3}+7 x^{2}-21 x-27=0$ are

Options

$$
\begin{aligned}
& \begin{array}{ll}
\text { (a) }(-3,-9,-1) & \text { (b) }(3,-9,-1) \\
(3,9,1) & \text { (d) }(-3,9,1)
\end{array}
\end{aligned}
$$

Question

The roots of the cubic equation
$x^{3}+7 x^{2}-21 x-27=0$ are

Options

$$
\begin{aligned}
& \begin{array}{l}
\text { (a) }(-3,-9,-1) \\
(3,9,1) \\
(\text { (d) }(-3,9,1)
\end{array}
\end{aligned}
$$

Question
 If $4 x^{3}+8 x^{2}-x-2=0$ then value of $(2 x+3)$ is given by

Question

If $4 x^{3}+8 x^{2}-x-2=0$ then value of $(2 x+3)$ is given by

Options

$\begin{array}{lll}\text { (a) } 4,-1,2 & \text { (b) } A, 2,1 & \text { (c) } 2,-4,-1\end{array}$
(d)
none of these

Question

If $4 x^{3}+8 x^{2}-x-2=0$ then value of $(2 x+3)$ is given by

Options

$$
\begin{array}{llll}
\text { (a) } 4,-1,2 & \text { (b) } A, 2,1 & \text { (c) } 2,-4,-1 & \text { (d) }
\end{array}
$$ none of these

Question

The rational root of the equation
$2 x^{3}-x^{2}-4 x+2=0$ is

Question

The rational root of the equation
$2 x^{3}-x^{2}-4 x+2=0$ is

Options

$\begin{array}{llll}\text { (a) } \frac{1}{2} & \text { (b) }-\frac{1}{2} & \text { (c) } 2 & \text { (d) }-2\end{array}$

Question

The rational root of the equation
$2 x^{3}-x^{2}-4 x+2=0$ is

Options

$\begin{array}{llll}\text { (a) } \frac{1}{2} & \text { (b) }-\frac{1}{2} & \text { (c) } 2 & \text { (d) }-2\end{array}$

Thank you

